发布时间:2024-11-21 16:50:40 来源: sp20241121
中新网 北京3月27日电 (记者 孙自法)施普林格·自然旗下学术期刊《自然-通讯》最新发表一篇机器学习论文称,研究人员提出一种机器学习方法,能帮助开发消费者喜爱度更高的含酒精和无酒精啤酒的新风味,这种方法或可帮助食品生产商以更高效和更具成本效益的方式满足特定消费者需求。
本项研究中,研究人员对啤酒进行实验分析(图片来自Justin Jin)。施普林格·自然/供图据该论文介绍,了解和预测消费者是否会喜欢新的食品风味是个复杂任务,受到众多化合物和外部因素影响。这对解读啤酒化学成分和消费者偏好之间的关系带来挑战。通常情况下,这种调研是通过消费者试验进行的,但试验受到诸多限制且效率不高。
本项研究中,研究人员在位于鲁汶大学的实验室里举办啤酒品尝会(图片来自Justin Jin)。施普林格·自然/供图论文通讯作者、比利时鲁汶大学Kevin Verstrepen和同事及合作者一起,从250种比利时商业啤酒(包括22种啤酒风格)中提取超过200种化学性质,并将这些数据与来自16名训练有素的品鉴小组成员的描述性感官分析数据,以及来自在线啤酒评论数据库(RateBeer)的18万多条公众消费者评论数据联系起来。他们利用这一大型数据集,训练了机器学习模型从啤酒的化学特征中关联并预测其风味和消费者评价,进一步用模型的预测改造了一种含酒精和无酒精商业啤酒来测试其有效性,结果在盲品中获得了训练有素的品鉴小组成员整体上更高的评价。
本项研究中,研究人员在位于鲁汶大学的实验室里举办啤酒品尝会(图片来自Justin Jin)。施普林格·自然/供图论文作者总结认为,这一机器学习工具有助于改善啤酒甚或其他食物和饮料的质量控制和配方开发,以更高效地满足消费者的特定需求。目前,该研究结果仍限于比利时主要的商业啤酒风格,后续可能需要更大量的样本来优化预测和克服局限性,包括识别出特定风格的影响和人口学信息,如年龄和文化等。(完)
【编辑:张奥林】